OPEN HOUSE Sunday June 27, 2021

Sunday June 27 from 10 am to 6 pm: Stop by and have a look at our latest projects. There are only a few left. My friend and favorite carpenter, Eric Wallner, installed this 27 foot long window seat in what I’m now calling the Library. What was a walk-through space is now transformed into a place to read and lounge. If you sit down. You MUST sit down because the ceiling height in this not-covered-by-Code “attic” space is a mere 5 feet. That’s my office in the cubbie beyond.

Eric used mostly scrap from the garage, although a few over-priced sheets of plywood and 2×4’s had to be purchased for the structure. Under the seat are the mechanical runs, still accessible if necessary. Here’s what it looked like before, viewed from the opposite direction with the storage cubbie beyond.

I look forward to seeing you and showing you all the features that make this home both a joy to live in and uber energy-efficient!

OPEN HOUSE Saturday May 15, 2021

Saturday May 15 from 10 am to 6 pm: After Farmer’s Market and after brunch but before the day gets away from you, please stop by and see a nearly-complete Poem Home. It’s been 10 months since my last Open House and I bet you know why. I moved in and hunkered down and unpacked after 10 “homeless” years. It’s been a pleasure finding just the right furnishings and plants and decorative objects for this modern/rustic fusion of a design and I’m grateful to the many people in my life who’ve helped with ideas and gifts and things they made. My latest swoon are the massive oak stumps I traded for some consulting (thank you Paul and Burdell). When you visit, ask me about insulation, fresh-air systems, non-toxic paint or anything else you’re curious about or will help you make more environmentally sound decisions about your own home improvements or future dream home.

The Loft Explained

July 17, 2020:  Perhaps the most common question I get is about the loft. My daughter’s was the bluntest: “What’s it for?”.

I’ll admit it’s unusual. Lots of modern-style homes and rustic-log homes have lofts but they’re living space like bedrooms. Mine’s more like a catwalk or an attic. By Code, my loft doesn’t qualify as “habitable space” because the ceiling is under 7 feet. A stairway isn’t required and neither is a guardrail (for details on how we built the loft see my post “Building a Loft out of a Pine Tree”).

The idea for the loft evolved as my floor plan and 3D exterior model took shape. I began with 2 bedroom suites flanking a main living area, sloped ceilings to expand the feeling of spaciousness in relatively small rooms, and an uninterrupted expanse of roof to maximize PV capacity.

20190828_120144I ended up with a shed roof—south-facing of course—with the added benefit of draining rainwater to the garden. Shed roofs are simple, economical, and instantly modern. I kept the slope low—just 3:12—but that still left me with a too-tall 13 foot high wall on the north.

20200715_104726I like spaciousness but I like cozy even more. One of my favorite hobbies is to watch how people use space—where people sit and where they don’t sit, what they notice and say they like and try to connect that to architectural artifacts. As a young designer, I’d been invited to a lovely new home with a 2-story living room—a popular feature in the late 1980’s. My hosts complained that they couldn’t get anyone in there. Everyone gravitated to the kitchen and the little sun porch adjacent. They fretted over solutions and eventually painted the ceiling and 3 feet down dark brown, in hopes of scaling down and warming up the space. I never did hear how that worked out.

Of course, the master of space manipulation was Frank Lloyd Wright. His living room at Taliesin is a PhD level course in how to make a human habitation grand and expansive and uplifting yet intimate and deeply comforting at the same time.

My loft runs the length of the living room and brings the kitchen ceiling down to 7 feet with a rough-sawn pine trellis-like structure overhead. The loft softens the space, acts as a sound-deflector/absorber, and provides a walkway to each of two storage rooms situated above the bathrooms. The living room and bedrooms get vaulted ceilings, but not too high. The kitchen and bathrooms get intimate ceilings that bring the outdoors in. And a little bit of storage for a little bit of junk is allowed in this modest home meant for a down-sizer.


I never imagined it until the paint was dry but why not put my office into the east storage room? I can’t stand up and stretch, but it’s a good reminder to break from the computer every couple hours. For now, I’m using my aluminum construction ladder for access, but a cool design for a wood one is in the works. I’m happy and productive up there.officeTo keep mechanicals accessible for future and to keep them out of outside walls, I built a chase along the backside of the loft. It’s not visible from the living room. Don’t you think a generously wide built-in bench running 26 feet long over the chase would be a lovely place for reading and afternoon naps?chase 220200716_081422

Cabinets & Countertops

April 15-July 14: Putting the kitchen and bathrooms together was fun.  All the planning, purchasing, and staging were done and it was time to open boxes.flat packCABINETS: I looked and looked and LOOOOKED for cabinets made with formaldehyde-free plywood. There aren’t many suppliers out there. I finally hit on Barker Cabinets. They had the style I liked, the price was mid-range, and they came with these green credentials:

  • made in America (Oregon)
  • cabinet boxes built with NAUF Purebond plywood from U.S. producer Columbia Forest Products
  • door frames are solid wood
  • inset panels are MDF CARB Phase 2 compliant or better
  • prefinished with clear-coat low VOC varnish
  • RTA (ready to assemble) cuts down on shipping

flat pack 2The cabinets were a breeze to put together. I was really impressed with how well-made the wood parts were, and the hardware was good quality.

I especially like the soft-close, full-extension, undermount Blum drawer glides.

4I chose a simple, straight-edged shaker style door and drawer front on a full overlay style cabinet box for a clean and uncluttered modern look. I had my heart set on painted cabinets, but gulped at Barker’s upcharge (clear coat is much less expensive). Barker had a solution that worked well for me. I could get the cabinet boxes and drawer boxes prefinished, but the doors and drawer fronts “raw”—sanded and ready for my own finish. I ordered “paint-grade alder”. I saved money, got to chose my own color, and didn’t get too bogged down because the work involved only the fronts.20200518_112133PAINT: Just as I did for the walls, I chose paint from Ecos, the first American paint manufacturer to meet the strict labeling of both DECLARE and Red List Free. The paint is non-toxic, low-odor, and has zero VOC’s (volatile organic compounds).9

20190918_103034I used semi-gloss in the same color as the lap siding on the exterior of the house—a dark grayish green. This is one of several ways that I brought the materials, colors, or finishes from outside to inside, creating a more cohesive environment.

COUNTERTOPS: If you’re trolling for “eco-friendly” countertops, you’ll see just about everything from granite to bamboo to poured-in-place concrete. What makes them “green” is complicated. You could justify just about any selection, and maybe that’s okay. I was interested in old-style linoleum after seeing it used in the Little Kitchen at Frank Lloyd Wright’s Taliesin. The material is appealingly soft and has good green-cred (linseed oil and sawdust)—but takes time and skill and when added up a little pricey. A friend could gift a stainless steel countertop with integral sink yanked out of a restaurant remodel, but I’d have to piece it in with something else to make it work with my cabinet order. I blanched at the cost of Paperstone and its cousin Richlite. Granite was out—it’s too cold and hard and over-used. Plus it’s shipped from overseas. My mind began to turn in a direction that surprised me. What about laminate?

Plastic laminate dominated the countertop market for decades. As a young designer working a kitchen showroom, so-called “postform” was the default. Only my more well-heeled customers even considered dropping several thousand dollars (instead of several hundred) on something better. Laminate was cheap to buy, cheap to install, durable, and came in fun colors and patterns like boomerang.

It’s still cheap and it’s still durable. And……it still looks and feels like plastic. But with a bit of sleigh-of-hand, I thought I might be able to make it look less cheap and more cool. Here are my tricks:

Matte Black: I like boomerangs, but not enough. Instead, go for a color and texture so low-key it disappears.

No Backsplash: nothing says 80’s laminate more than the rounded integral backsplash that the industry calls postform. I’ll use a strip of porcelain tile instead.

Square Edge: for a modern sensibility. The tell-tale “black line” of laminate veneer disappears in the matte black.

Seam: so the problem with laminate is that it comes only so long—my supplier could deliver 12′ max. My longest stretch is 13′. Other countertop materials can be made seamless or nearly so but not laminate. I ordered a 10′ and a 3′ and placed the break over a cabinet seam (not shown in photo below). wOnce I’d resolved my aesthetic concerns, I looked into the eco-friendly part. Laminate is made from kraft paper impregnated with formaldehyde based binders that when fused under heat and pressure turn into a purportedly inert plastic. The Formica I chose is GREENGUARD Gold certified for low chemical emissions.

A good start, but what about the rest? The laminate needs to be glued to particleboard—and particleboard is right up there with carpet for its reputation for off-gassing. Remember the FEMA trailer debacle right after Hurricane Katrina? And new-car smell? Kind of satisfying in a new car, but it doesn’t have quite the same charm in a kitchen. Formaldehyde is prevalent in the building industry, especially in wood sheet products, glues, adhesives, fabrics, carpet, and insulation.

Formaldehyde is a naturally occurring VOC that dissipates quickly when exposed to air, but when trapped in an enclosed space can build up. It can cause throat irritation, burning eyes, coughing, nausea, and itchy skin. It can trigger asthma. Long-term exposure is linked to cancer. Some people have no reaction but other people like me do. I’ve walked onto many a construction site (and finished new home) only to have my throat immediately constrict and a headache start.

The EPA regulates formaldehyde in building products and recognizes these third-party tested labels:

NAUF no-added urea formaldehyde

NAF no added formaldehyde

ULEF ultra low emitting formaldehyde

An online search turned up ULEF labeled “Skyblend” particleboard. It took a few phone calls and a few puzzled salespeople, but my local lumberyard came through. Their supplier could get it.

The squishy thing about the label is that even though it cuts emissions by about half (compared to non-labeled particleboard), no one seems to know how much exposure is too much. Background levels of formaldehyde in a typical urban area are 0.03 ppm (more in heavy traffic). ULEF particleboard must test out at 0.05 ppm (90% of the time). Manufacturers, trade associations, and the EPA itself are silent on the actual benefits of ULEF other than that the product met the number. For now, I’ll think of it the way I think about organic vegetables: surely better for my health and a small way to vote with my pocketbook. So far, my countertops haven’t made me cough and I haven’t had a headache!!

I would have been nervous, but carpenter Eric Wallner was unfazed about the install. The tops were delivered by Tri County Building Supply well wrapped and in perfect shape. Eric executed the splined seam and cut the holes for the sinks. The sinks were set in a bead of non-toxic, low odor silicone caulk called DuraSil from ChemLink—a product I ordered from Green Building Supply.

image2I couldn’t be more proud of my somewhat green and I’ll admit it down-market countertops. Tile backsplash to follow.

FLOATING SHELVES: I kicked the upper cabinet habit 25 years ago when I remodeled my former farmhouse, and I’m glad to see it’s now trending. There were a couple of thick planks left over from the loft project that would make fine rustic shelves, about 7” wide. They came from a towering pine that stood just a few blocks from here. My friend Jim Birkemeier felled the tree and milled it up at his farm north of town. The planks were dried in a solar kiln. Eric and I chose a section with a ribbon of bark, and another stretch with some interesting knots. We got the idea to stagger the height and notch the ends around the window opening by playing around with them.  They are held in place by hidden steel pins screwed into studs behind the drywall.20200715_104406








Who Knew Plywood Could Be Elegant?

October 30, 2019 to May 11, 2020:  I’d long admired the cabinets made by my friend Eric Wallner for his own home. The design is simple, functional, and inspired by the work of Frank Lloyd Wright. Just like at Taliesin and dozens of his Usonian homes, they are made of humble plywood. Doors swing from unadorned boxes by way of “piano hinges”—-full length strips of steel just like you’d see closing the lid of a piano. ericBuilt-ins like this were promoted by Wright as a way to save space and save money. Tucked along hallways, they became an integral part of his post-World War II design vocabulary. Now the “everyman” could afford a thoughtfully designed space—not just another cookie-cutter box. Plywood was celebrated as new and modern—an industrial material beautiful in its own right.  FullSize 1Like Wright’s, Eric’s design is constrained by the dimensions of a 4×8 sheet of plywood. Here is his initial sketch for two 48” wide x 24” deep x 72” high units. I needed a wardrobe for each bedroom and one for coats at the entryway. Plus a linen cabinet.  CCI_000002When I later asked for 72” long units—-48” for hanging clothes and 24” for shelves, Eric devised this pleasing asymmetrical scheme. He ordered 15 sheets of 3/4” thick 11 ply formaldehyde-free birch plywood and got to work. He promised that all that would be left on the shop floor would be a pile of sawdust.  20200421_090641I chose birch over a more exotic veneer because it’s super cheap. Birch plywood is considered “case grade”—meant to be used for cabinet backs and sides, not fronts. Look closely and you’ll see the telltale “footballs”. These patches are glued in at the factory to replace troublesome knots and are quite certainly not meant to show. We think differently.

Inexpensive stainless steel furniture legs from IKEA take the place of boxed-in toe kicks. Slender stainless steel handles take the place of knobs or latches for barrier-free accessibility.  Cabinet backs are dispensed with because painted drywall is fine. Butt seams are banished in favor of elegant offsets. 11 Edges are left exposed, not hidden behind a strip of veneer.  And every inch is lovingly sanded to baby bottom smooth. The wood grain becomes almost iridescent and the whole assembly is a pleasure.   Thank you Eric!12

Mud & Paint

December 27-April 14:  It’s a good thing that the dreary work of mudding & taping coincided with the dreary days of winter (and the better part of the shut down). It was 20 years since I’d last picked up my drywall trowel and unspooled a roll of tape, but the skills came back. I started in the attic to make sure. 

Drywall and the mud that makes it seamless are one of the few modern building materials that are relatively benign.  Drywall is approximately 75-90% gypsum (calcium sulfate), 10% cellulose and “trace amounts” of proprietary additives. Gypsum is considered an abundant resource and available worldwide. It’s most commonly extracted from vast open pit mines, manufactured in vast factories, and shipped in vast quantities. Mud (joint compound) in it’s conventional ready-mix form is 60% limestone, 32% water with the rest talcum, mica, perlite and a mix of proprietary ingredients including fungicides, preservatives, and polymers. The USG compound I used has been granted a Green Guard Gold label—a third party certification that tests for chemical emissions to the indoor environment (mostly VOC’s).

I could have made the more environmentally sound choice (were I willing to shoulder more work) by buying compound in its powdered form. This product has less packaging waste (all those 5 gallon buckets), transportation waste (all that factory added water), and doesn’t contain nearly as many mystery ingredients. I did order the bulk of my ready-mix in boxes (with plastic bag liners), not buckets. 

The drywall scraps (despite all efforts, there were a lot), got tossed to the edge of my property and covered with rotten straw. Gypsum is a good soil amendment when you want to raise the pH of your soil (to make it more alkaline). I chopped a few scraps and threw them in the hole where I planted a lilac bush. This unconventional solution may have raised eyebrows in the neighborhood, but saved me the expense and hassle of a dumpster.  lilac

For paint, I chose a soft white in a matte finish for its timeless appeal. An eggshell finish is more practical but I object to the shine and was worried that my mud job wouldn’t be up to the challenge. A flat or matte finish hides better.

Just as I did for the exterior, I purchased organic, low odor, zero VOC paint from South Carolina manufacturer Ecos Paint. The paint is certified Red List Free (free of “worst in class” chemicals prevalent in the building industry).


It’s non-toxic and biodegradable. It doesn’t contain any algicides, mildewcides, pesticides, herbicides, or fungicides. Ecos is one of few companies with a completely transparent label—all ingredients are listed. Their product is especially needed for those with chemical sensitivities and other vulnerable people.  

The paint covered well and was reasonably priced. I think companies like this who are striving to make a difference should be rewarded with our dollars.

Once the brushes and rollers were put away and the tarps folded up, I breathed a sigh of relief. I was finally able to enjoy the feel of my transformed space without scrutinizing every dip, drip, skip and bubble.

polished June 2020

OPEN HOUSE Saturday July 18, 2020

Saturday July 18 from 10 am to 5 pm:  Are you looking for something interesting to do this weekend that’s not too far away?  Why not stop by and have a look at Spring Green’s first net-zero energy home?  Construction is almost complete, except for a few finishing touches.  I now have 6 months of solid numbers on solar production—and if you ignore a few nitpicky details—Poem Homes is not just net-zero.  It’s producing twice the energy it consumes!  But wait, I’m not getting rich.  As of July 8, I’ve banked just $35.13 with the utility company.  20200609_074430Speaking of finishing touches, my favorite (so far) is the cedar window sills and the cedar door jambs.  What was in my mind’s eye has become a beautiful reality thanks to the careful attentions of Eric Wallner.  Check out the patio door jamb, a real Frank Lloyd Wright move the way it goes from outside to inside with seemingly no break (but there is).

When you visit, you’ll find masks and hand sanitizer at the door.  Outside, we can be more free.  I look forward to seeing you—and it doesn’t matter whether you’re thinking of buying or building or remodeling.  Poem Homes is all about learning and conversations, the exchange of ideas and contacts, and being grateful for the chance to fashion a way to live more sustainably. 20200713_195123


OPEN HOUSE Saturday June 13, 2020

Saturday June 13 from 10 am to 5 pm:  Are you net-zero curious?  Stop by today and check out our 7kW solar array and learn how it powers this super-insulated all-electric home.  Equipment is installed and we now have modern conveniences like bath vents, AC and lights.  Super energy efficient, quiet, LED, and dark-sky friendly of course.  Flush toilets are nice too—especially at 1.28 gpf (gallons per flush).  Cabinets, countertops, and other finishing touches are going in, all vetted for ultra-low chemical additives like formaldehyde.  Notice too the features that make this home barrier-free.


Because of Covid, I’ll be asking all visitors to wear masks and use hand sanitizer upon entering—both of which I’ll have on hand for your use.  Outside, we can social distance.  I’m looking forward to seeing you!

OPEN HOUSE Saturday February 15, 2020

Saturday February 15 from 10 am to 5 pm:  Stop by today and see what we’ve done!  Drywall is up and mudding the seams is “in process”.  Over the next few months, finishes—from paint to cabinets to counters—will be installed, all vetted for their ultra-low or non-toxic properties.  Ask me anything you want about the construction so far—like how to source healthy materials, what makes it super-insulated, what makes it low-carbon footprint, and what makes it zero

A beautiful, sparkly snow fell on Sunday.  It shut down solar production for the day and the next and the next.  That’s the downside of a roof-mount install.  A ground-mount (on a rack) could be swept clean.  My low pitch roof (3:12) doesn’t help.  Snow would slide off a steeper roof faster.

How do I know when the PV (photovoltaic) system is working?  The easiest way is to look at the meter on the side of the garage.  If the arrow is pointing toward the street, I’m sending kWh’s to the grid, and getting paid.  If the arrow is pointing toward the house, I’m buying from the utility.  Of course, it constantly varies depending on sun and clouds and whatever equipment I might be running.  I’m paid 3 cents/kWh for my production.  When I buy, it’s at 12 cents/kWh.meter

There’s also an app for that.  I can look at my phone to find out exactly how much the panels are producing, hour by hour.  Last week a clear day with no snow netted me 31 kWh of electricity.  That’s equivalent to running an efficient refrigerator for 19 days.  It’s also equivalent to the greenhouse gas emissions of driving a car 53 miles.

Dense Pack: Take 2

December 16-January 16:  Nothing is more motivating on a building project than knowing you have put 100% into a task, that it is done, and you are now free move on to something new. As if it were Christmas, I tore open 4 boxes of plastic MemBrain vapor retarder and began hanging it like a curtain on my walls. Of course, it quickly became another labor of love and laborious. Each electrical wall outlet and switch, each wire and pipe, each window opening had to be carefully lapped around and caulked before I could confidently call in the drywallers and the insulators.

I explained the necessity and benefits in my previous posts “The Whys & Hows of Vapor Retarders” and “Hanging the Lid”, written after I’d draped and drywalled the ceiling.

Just as before, the vapor retarder hung long and the drywall stopped short at the edges. Running along the ceiling perimeter and under each window was a 6” gap—just enough room to stick in the insulation hose.

My crew from Accurate-Airtight Exteriors arrived with a box truck fitted with a hopper and assortment of hoses, and a trailer full of bales. They were eager to see how my house was coming along. Last time they were here was in June, when it took them 3 days to pack the ceiling. This trip, they’d need 4 to pack the walls. A lot of their work is retrofit and crawling around in attics and basements. My house was going to be a nice break in the routine, easy—even a little boring.

My walls are 11-3/4” thick. The north wall is 13′-6” tall and 56′ long, with few windows. The bales were slit open in the garage and slowly fed into the hopper. The hoses were draped through a window and down through each frame cavity. Cellulose—non-toxic, biodegradable, and 100% a byproduct of the paper mills up in the Fox Valley—trickled out. It was going to be a slog. Wallace Kennedy and son Nicholas took it in stride, and were a delight to have around.

There are many ways to build a super-insulated wall. My goal was “double Code minimum”—about R-38 to R-45. Here are the basic options I considered:


  • SIP’s(structural insulated panels)
  • ICF’s (insulated concrete forms)


  • 2×4 or 2X6 with sheet foam or sheet mineral wool
  • 2×4 or 2×6 with I-joist exoskeleton with fiber insulation


  • 2×6 with horizontal or vertical strapping with fiber insulation
  • 2×4 double-stud with fiber insulation

All are interesting and have their advantages. To decide, I turned to my most trusted source for practical advice and solid building science, Green Building Adviser. What method—for my situation—would be the most build-able, affordable, least toxic, and have the lowest carbon footprint? I settled on a 2×4 double-stud wall with dense pack (not loose fill) cellulose, for an R-45.  I’d be happy to talk with you in more depth about the options, pro & con.

bottom plate

Double 2×4 Wall

The house was, of course, noticeably warmer by the time my crew left.  On sunny days, I can turn off the heat and coast on passive solar energy.  Next step: mudding & taping the drywall.



Mind the Gap: Take Two

December 10, 2019:  Finally, it was time to find out how well I’d done. In the last few days, the electrician had made a lot of holes. Had I followed up with each one? Did they all get hit with caulk or tape?


Subway Station, somewhere in Great Britain

The energy rater who is shepherding me through the process of getting the house certified through Wisconsin’s Focus on Energy’s New Home Program was arriving with his blower door kit. This was going to be my second of three tests—and the most important. The drywallers were due in a week, and this was my last chance to make things right. I really, really wanted a good number. My goal was a “1”.

An airtight building shell is essential for the kind of house I’m building, and a blower door test is the only way to know for sure you have it. Jim Kjorlie of Kjorlie Design Services has tested hundreds of homes in the Madison area. The best result he’s seen is 1.2 ACH (air changes per hour)—literally how many times the volume of air in the home is changed out with fresh air from leaks in the building shell.

Wisconsin’s Uniform Dwelling Code allows a new home to be as leaky as 7.0 ACH, though studies have shown that the average new home here tests out at 4.0 ACH. Some neighboring states mandate 3.0 ACH. Some really meticulous builders are hitting 0.5 ACH or less. Is all that caulking and taping worth the extra cost? I’d argue that a well-sealed home insures against more than high utility bills: it insures against moisture, mold, mildew, and insect problems. Even so, out of curiosity I ran the numbers on my house through a modeling program called REM Design:


Poem Home @4.0 ACH = $908/year heating costs @0.12/kWh
Poem Home @0.6 ACH = $630/year heating costs @0.12/kWh

Jim set up his equipment by propping open the front door and replacing it with a fan attached to an adjustable shroud. The fan slowly depressurizes the house to simulate a 20 mph wind bearing down on all sides. Drafts that normally aren’t felt are suddenly amplified. My friends Eric and Lew stopped by to see how it’s done, and thanks to their sleuthing, we found two major leaks.20191210_133505

Cold air from the mini-split was pouring out the narrow gap between the unit and the drywall. We later found out that the installer hadn’t sealed or insulated the line set connecting the outdoor unit to the indoor unit.  I can stuff this with fiberglass.

The second leak was at the fixed panel of the patio door. A steady draft was easily detected by waving a hand over the crack between the frame and the sash.  I can caulk this.

So how did I do? We got a 1.0. Yeah! “Don’t celebrate yet, Amber” is what Jim didn’t say but implied. He’ll be back for a final test when the house is complete.


October 14 to January 7:  Now we punch holes. After all the careful air-sealing, after all the work and worry with caulk guns and rolls of tape and spray-foam—it was time to make intentional holes, lots of them.

ELECTRICAL  My electrician got started by extending the service from the panel in the garage to the far corners of the house. I got to help, drilling holes and running wire. It was all new to me, and interesting. Bob Rowen of Rowen Electric insisted on straight runs, artful bends, and minimal slack.

The installation required a few extra steps and probably more wire compared to a conventional home, but in several ways is more environmentally friendly. Most critical is the extra attention paid to air-sealing. Each line coming in and going out is sealed with flexible silicon caulk or flexible tape. Electrical boxes have integral gaskets that compress when drywall is attached. And the vapor retarder was taped to the gasket, providing both a continuous air-seal and vapor-seal.

In other posts, I’ve extolled the virtues of a slab-on-grade home, but here I have to admit that it made running mechanicals harder. In a conventional home, you run freely through wall and ceiling cavities but on this job site they are “Sacred Space” reserved for insulation. You also run through the attic (none here), the basement (none here), and the floor cavities (none here). Instead, I built a chase on top of the loft floor, tucked along the back wall and out of sight from the living room below.

The electrical runs are attached to the loft flooring, covered by a plywood lid that can be flipped up for service at any time in the future. The plumbing pipes are above. Future plans call for a cushioned bench built over top and running the length.crop

LIGHTING  Everything is LED (light emitting diode)—-no incandescent, halogen, or CFL (compact fluorescent lights). LED’s use about 10% of the electricity of incandescents and about half that of CFL’s. LED’s don’t contain the mercury that CFL’s do—and supposedly no hazardous chemicals—but do contain small amounts of heavy metals that can be recycled. I have yet to find a recycler. Do you know one?20200206_105258

LED’s are not only cheap to use, they are cheap to buy. The first bulb I ever saw—just a few years ago–was proudly displayed by a friend who dropped something like $50 on it. For the garage, I chose simple porcelain sockets fitted with 25 cent LED bulbs that are expected to last 22 years, at a cost of $1.20/year. Thank goodness for those “early adopters” who purchase by purchase spur technology along—-but I’m not one of them.20200109_140028Outside, I chose “dark sky friendly” light fixtures. Any fixture that casts light downward instead of upward or outward is good. To be sure, you can look for a compliance label when shopping. For everything you need to know, check out International Dark Sky Association.

A personal pet peeve and (as I learn more), harmful to human and animal health are LED bulbs that cast an eerie, unnatural brightness. It’s the same “blue light” our phone screens give off that we know disrupt our circadian rhythms. When used in outdoor lighting, they brighten the night sky more than other light sources do and effect the survival strategies of nocturnal animals.dark sky KelvinIt doesn’t have to be this way. Look for “warm white” bulbs in the 2700-3000 Kelvin range and a CRI (color rendering index) of at least 90. Notice the difference between my house and my nearest neighbor.

HEATING & COOLING  Building an all-electric, fossil-fuel free home in our northern climate would have been a laughable proposition just a few years ago, but is now possible with the latest “mini-splits”. You’ve probably seen these devices installed in a room addition, office, or small apartment. The indoor part looks like an oversized through-the-wall air conditioner, and the outdoor part looks like a rectangular version of an air-conditioning compressor. The technical name is Air Source Heat Pump (ASHP). I chose the simplest version: single-zone and ductless.

These super-efficient appliances are also super-affordable. Where a conventional house might spend upwards of $20,000 on a heating and cooling system, mine came in under $5000. Of course, this is possible because my house is wearing a thick down parka on top of a wool sweater and a turtleneck—not a sporty spring jacket.

A conventional furnace is overkill for a small, super-insulated house. Ductwork is cumbersome, expensive, often poorly sized, and can harbor dust and allergens. With an open floor plan, and for families who can tolerate some temperature differences from room to room— a single mini-split can work. Daily modifications may be needed, like closing and opening doors for better circulation and closing and opening curtains for better temperature control.20191106_163035The Mitsubishi unit went in mid-October. By mid-November outdoor temperatures were dropping and snow was flying.  Reluctantly, I turned it on. The ceiling was insulated, but not the walls. We were still wiring and willing to work chilly, but the water was on and the plumbers were coming. As it turned out, 2 months would go by before wall insulation went in. I dreaded looking at my electric bill. Good news: those two months of heat were “paid for” by my solar production in July.

More good news: since I broke ground and tapped into the grid (November 2018) until now, I’ve produced more electricity that I’ve consumed. So far, my construction project is “energy net positive” by 2782 kWh. That’s a “carbon dioxide equivalent” of the carbon sequestered by 2.6 acres of forest/year OR the greenhouse gas emissions from 4881 miles of driving.

VENTILATION  People ask me, “Isn’t it true you can build a house too tight?” In a word, no. A conventional house gets its fresh air through cracks in the windows and electrical boxes and random places. That “fresh air” is pulled through dusty crevices and frame cavities and in most homes, formaldehyde-laced fiberglass batts. Along the way, it’s depositing moisture—creating a breeding ground for mold and mildew.

A super air-tight house shuts down random leaks and instead relies on a mechanical system that brings in filtered fresh air. I looked for a system that could dial up or dial down depending atmospheric conditions and how many people and plants and cooks I have over.

Condensation on window panes is the bane of Northern Homeowners and a sign of too much moisture. Stuffiness is unpleasant and a reminder that “indoor air pollution” really is a thing. Damp, stagnant air is more likely to harbor and spread disease. Effective ventilation that dries and dilutes indoor air can limit bacteria, viruses, dust mites, and mold—and prevent allergies and asthma according to the American Lung Association.

Finding the right appliance turned out to be the biggest headache on my “build a house or bust to-do list”. The answer is what’s called an HRV or ERV (heat-recovery or energy-recovery ventilator). Most HRV’s on the market are sized for larger homes or commercial spaces and require complicated ductwork and expert commissioning. They’re not yet common. Contractors I contacted seemed unfamiliar with them or unable to answer my questions. I poured over manufacturers specs and called distributors who could point to a specific unit but not installation details. I finally settled an innovative, ductless, through-the-wall product called Lunos from  My electrician gave his tacit assent.

The units look simple and unobtrusive, were easy to install, and have the best heat recovery efficiency and noise ratings I found. Working in synchrony, each Lunos (1 in each bedroom, 1 in the living room, 1 in the loft) push stale indoor air out through a ceramic core, heating it up. After 70 seconds, the fans reverse direction. Fresh air is pulled through the ceramic core—and a filter—to deliver a stream of clean, warm air to the room.

lunos crop

Lunos Vent (left of bedroom window)

To meet the high CFM ratings required by Code for year-round bathroom ventilation, we installed ultra-quiet Panasonic fans above each shower.


Panasonic Bath Fan (screwed to loft floor)

The Code is silent on kitchen range hood ventilation. I plan to install a high quality ductless hood with carbon filter. For the laundry, I plan to install a ductless condensing dryer. So altogether, we avoided 2 holes (range hood, dryer) but punched 8 big holes (4 Lunos, 2 bath fans, 1 plumbing vent, 1 line set sleeve for the ASHP), and dozens of small holes through the thermal, vapor, and air barrier that is the wall.  There are none through the roof.

Is it really possible to survive winter without burning fossil fuels? I’ll keep you posted on how everything mechanical goes once the house is up and running and occupied.  If you have any questions or can recommend something, please let me know!





Inground Gutters

September 30-October 4: Gutters are a maintenance headache and generally, pretty ugly. I decided to try “in-ground gutters”.



My excavation crew laid down a 12″ deep layer of washed river stone in a landscape-fabric-lined-trench under the eaves.  The trench prevents erosion at grade and splash-back on the siding.  Rainwater flows freely through the gaps in the stone, seeps through the fabric, and drains away into the native sand below. The fabric prevents the underlying sand from working its way up through the river stone and clogging the works.

If I had a basement to keep dry and/or heavy clay soils, I’d need a more robust solution. It would include plastic draintile (slots up) laid within the river stone and run downslope to daylight.  This strategy would serve the same function as downspouts with extenders—to get the water away, fast.


Shawn & Tyler of Slaney Landscaping & Excavating, Dodgeville

Ringing a house with stone like this is fairly common, and usually done to make mowing easy. Most installations include black plastic bulb-style landscape edging but I decided to take my chances without. It seemed like another maintenance issue (they have a tendency to pop up) and I visualized a “naturalized” edge where stone and grass meet. So far, I’m pleased with the look but worried about future weeds until a friend gave me a tip: “hit ’em with a blower torch”.






Building a Loft out of a Pine Tree

August 5-October 4: The loft is the most unique feature of my design and so far, the most fun to build. I ordered a 4×8 Douglas Fir beam from the lumber yard, and it arrived in pristine condition—28 feet of straight, clean, perfectly milled wood. I called in Mike & Nino, the two strong guys from Wood & Stone to set it in pockets they had framed out a few weeks earlier.

While sturdy on its own, the beam would need support to carry the weight of the loft. My design called for threaded rods, similar to what you’d find around here supporting the hay mow of a “hung barn”. Just like a farmer who wants a wide open milking parlor, I wanted a large living room free from posts. 3I turned to my friend Bob Rowen, a master electrician who also happens to be good at solving any sort of mechanical problem. He tinkered with wood scraps and presented me with a mock up that we then took to a local machinist to weld up from steel rods and plates.  Thinking ahead, Bob built two wood boxes reinforced with steel channel and installed them between pairs of trusses. At the design stage, I had coordinated with the truss manufacturer to factor in the point load on these trusses, which came with an engineered pattern of webbing & steel plating, along with an extra-wide 2×6 bottom chord.

My worries about drilling the holes and having them come out straight were found-less—Bob devises a jig for everything he does and has a clear road map in his head for each step to be taken. The beam was hoisted up and down several times with block & tackle as we tested fit.

When the last bolt was turned tight, I masked the area with paper and tape and spray painted the steel matte black (note: the spray paint came straight from the hardware store, not vetted for low VOC or other chemical emissions). We think the rods turned out pretty handsome, with their extra-wide bottom plates and over-scaled double nuts.

Road trips to Timbergreen Farm became our pleasant distraction over the next week. Just a few miles up the road, consulting forester Jim Birkemeir runs a milling operation and solar kiln. His stash of lumber from the Driftless includes white oak, red oak, black oak, hickory, black walnut, ash, cherry, and other hardwoods but I had my heart set on pine. Humble, easy-to-work-with, aromatic pine. He had just the thing: rough planks harvested from a stately White that had stood strong in the Village for a hundred years. He agreed to mill it for me. 9

Our first haul included 2×8’s for ledgers and 2×6’s for floor joists. We sorted for warp, wane, and knots. We accepted some scant thickness or width and agreed that skips (saw marks) added character. Pieces that had pronounced staining or dark streaks were pronounced “uglies” and went in the mechanical room. Working with minimally processed wood takes a different mindset. You have to love the fresh smell and slight stickiness, the lack of conformity, and the limits of band saws. The payoff is rustic charm and knowing that this is about as low-carbon footprint for a building material as you can get. 10

People are surprised to learn that you can build with “unstamped” wood—wood that doesn’t come from a lumberyard and doesn’t carry a grade stamp. The Wisconsin Uniform Dwelling Code allows it, but downgrades it to #3 (most framing lumber is #2). My joist spans are short (under 10′), and the design load is low (“attic with storage”—not “habitable space”).

Just as we did for interior walls, we installed vapor retarder and drywall before attaching the 2×8 ledgers in place. We lag-screwed the ledgers to the inner 2×4 wall and set the 2×6 floor joists temporarily with scraps of plywood. 11

The original plan was to support the floor joists on a 2×2 nailer but a mock-up looked clunky. I also considered decorative joist hangers, but they looked busy. Bob had a better idea. Why not use an angle iron? He ordered it up from a local shop (raw steel for the kitchen and stainless for the bathrooms) and we spent several days laying out a pattern of holes and patiently drilling them out. I helped, then set up an ad hoc assembly line to spray paint the dozens of washers and bolts we’d need to attach the angle iron to the ledger and the joists to the angle iron.

Finally, each joist was top screwed into the ledger, blocking, or the beam via a concealed pocket hole.

Our next foray to Timbergreen was to pick up full 1” thick pine flooring, milled from the same tree. Jim had neat piles ready for us which we sorted for width and quality. As before, the best stuff went to the kitchen. Never mind the discoloration from where straps held bundles together in the kiln and unevenness from thickness differences and skips. My job was a hands & knees operation up in the loft—running the air nailer—while Bob manned the saw below.

The loft is a storage loft. By Code, it’s an “attic”. It doesn’t qualify as habitable space, because the ceiling is less than 7′ high. The advantage is that I don’t need to install a guardrail, and I don’t need a proper stair to it. In lieu of a basement, I at least have some space for junk but am still forced to downsize. The disadvantage is that it’s not really convenient, and you can’t really stand up.

The loft is also a mechanical chase way. The electrical runs are now in place along the back wall and plumbing will come next week. Tucked along the back wall, the chase isn’t visible from the living room. 20

The idea of the loft took shape in the design phase as I settled on a shed roof (facing south) for the PV solar panels. But even if I kept the slope as low as possible—3:12 for a metal roof is pretty much the limit—I’d still have a lot of space above the bathrooms. Frank Lloyd Wright did it, but I didn’t want a 13′-6” high ceiling in my bathroom. I like vaulted space but I also like cozy. Having a wood trellis-like or pergola-like structure overhead was appealing, and having a low entryway give way to a grand space as you turned the corner into the living room seemed like a better way to channel FLLW. 19

The raw and rustic nature of the loft will animate the more contemporary forms and materials I’ll use elsewhere in the house. It will bring my affinity to nature indoors, and restore my spirit especially over the long and drab Wisconsin winters. Research shows that nature-connected design makes people healthier. It improves our emotional state and reduces our blood pressure, heart rate, and stress level. It increases social interactions and creativity. But architect Frank Lloyd Wright said it better:

“Wood is the most humanly intimate of all materials, and the most kindly to man.”

Rooms Take Shape-Interior Framing

July 18-October 10: People seem to like big, open, vaulted spaces and many a visitor has “oohhed” and “aahhed” over the barn-like quality of my Poem Home. I almost hated to call in the crew to build out the interior rooms, but it was finally time. The first step was to install the missing strip of drywall at the ceiling. That’s the 12” gap down the length of the building where the insulation crew accessed the ceiling cavity just a few weeks earlier. 2Once sealed up, top plates were screwed through the drywall into blocking between the roof trusses and studs were dropped down to bottom plates anchored in the slab. At exterior walls, the framing was held 3/4” shy and the last stud left loose, so I could slip in drywall later.

This isn’t the usual sequence. Conventional practice has all the framing done before drywall shows up. But for a super-airtight house like mine, you take extra steps to shut down air movement. In the same way that you want your down parka to cinch up at the wrists and waist when you venture out in sub-zero weather, you want your exterior walls to block drafts—-whether those drafts come from outside or from the volume of air inside the building. Insulation works best in a dead-air cavity—-in my case 12” of it sandwiched between plywood and drywall. 7

To maximize space for insulation, and to save on the cost of wood, the interior walls abut “ladder blocking” instead of doubled-up or tripled-up studs. The crew from Wood & Stone got the interior walls up in just 2 days. Fitting sections of vapor retarder and drywall between the ladder blocking and the new walls was my job, and that took longer.

Here’s are plan-view sketches that explain why I took this extra step. In conventional construction, interior walls are attached directly to the exterior frame. The first sketch shows that when built this way, air can pass from an opening in an interior wall (like an electrical outlet) into the exterior wall. Even when packed with insulation, air can move through and carry with it warmth and moisture—wasting energy and risking condensation within the colder outside wall. In the second sketch, a continuous vapor retarder and drywall is in place before the interior wall is permanently attached, blocking air movement.


In this house, the drywall serves an additional function. Just as I did for the ceiling, I need to have drywall in place before the insulation crew shows up next month to blow the walls. Conventional batt insulation (like pink fiberglass), can simply be placed in an open cavity but blown-in insulation like cellulose needs an enclosed cavity. One way to do that is to staple a fabric across the wall studs. But my crew asked for drywall, promising it would make for a better job and save money. I’ll need to leave them a 6” gap at the top of each wall and at the bottom of each window so they can access each bay with their tubes.

For the plumber, I built a half wall inboard of a section of drywall at the laundry so his pipes don’t use up space in the exterior wall better left for insulation. This also eliminates any risk of freezing and makes the plumbing accessible for future repairs or replacement.

Next, I installed 3/4” plywood blocking between studs wherever grab bars might be needed in the bathrooms. The blocking runs horizontally behind the toilet and continuously through the walk-in shower. Plywood also covers the 6 foot high shower wall on both sides, for vertical and/or horizontal applications.

It was Bob Rowen’s idea to secure the shower wall with a section of square stock. He sketched out a 5 foot long bar with metal plates and had a local shop weld it up out of stainless steel. It’s bolted through the end studs and to the loft floor above with T-nuts.

11 14


While the walls went up fast, the details took time. Fitted out, the rooms have each taken on their own shape, and they feel right. The size and proportion of the bedrooms is pleasing, and the bathrooms work. The “great room” stills feels big, and with the loft in place (see next post)—still feels like a barn. And that’s a good thing.

OPEN HOUSE Sunday November 24

Sunday November 24th from 10 am to 5 pm:  Turns out, we got slammed by freezing temps early this year. But not before this stunning rock retaining wall got in the ground, thanks to my friend Lew Lama and his crew at Wood & Stone. Come see it and explore it in all its sublime charm. 20191114_142803It all started when a dump truck off-loaded a few boulders from a farm in Ridgeway.  Then, smaller stones of mixed provenance snagged on the cheap as overage from Lew’s other projects. These were sorted & stacked as bottom layer, middle layer and cap layer.  Loads of crushed limestone, washed river stone, and assorted fill material stood at the ready.

The wall rose steadily, battered back and keyed together, to reach the string line set to house grade.  Mike & Nino set the biggest, baddest bolder at the Southeast corner.

When filled with topsoil, I’ll have a level vegetable garden right outside the door.  Please join me on Sunday to talk nice about local materials, craftsmanship, and energy-efficient building.


OPEN HOUSE Saturday October 19

Saturday October 19 from 10 am to 5 pm: Please join me at the building site to talk about how we can transform our homes from energy-wasters to energy-producers.  See how our first model home plans to solve the problem of cold, drafty rooms and high monthly fuel bills, and if it’s a sunny day watch the electrical meter “spin backwards”.

And check out our latest project: “in-ground gutters”.  Instead of conventional gutters and downspouts, I had my excavation crew lay down a 12″ deep layer of washed river stone in a trench under the eaves.  The trench prevents erosion at grade and splash-back on the siding.  Rainwater flows freely through the gaps in the stone and seeps through the sand bed below.  If I had a basement and/or heavy clay soils, plastic draintile run downslope to a drywell or daylight would be in order.  This strategy would serve the same function as downspouts with extenders—getting the water away, fast.  My site is easy: no clay, no rocks, no standing water, no muddy boots.  The Village is built on the ancient bed of the Wisconsin River.  Life is a beach!20190930_121501

OPEN HOUSE Saturday September 28

Saturday September 28 from 10 am to 6 pm:  Can you stop by (maybe after Farmers Market and brunch at the General Store) and see what we’ve been up to at Spring Green’s first net-zero energy house?

The loft is taking shape and now instead of pointing up and waving my arms in the air and struggling to find the words to explain my design, you’ll see for yourself how it might work. We’re building it with rough sawn lumber that came from a towering White Pine at the corner of Winstead Street & Monroe. Do you remember it?

My friend Jim Birkemeier of Timbergreen Farm felled it, hauled it home just north of town, milled it into planks, stacked it in the solar kiln, let it dry, ripped it into boards, ran it through the saw to make tongue & groove flooring, and stacked it neatly for me to pick up.

This is about as local and low-carbon footprint as you can get!  Have you hugged a tree today?

Wood is Good

June 1-September 13: Working with wood “for show” is rewarding and I spent many pleasant days sealing 1×4 pine boards for the soffit and 1×8 pine boards for siding. By the time my crew showed up, I had an impressive stack.

bestWe started on the underside of the roof overhang, and hit on what might be an original idea—spacing the 1×4’s apart the width of a nail to create an integral vented soffit. The corners turn like a woven basket.

goodMost modern homes or remodeled homes have unremarkable “punched tin” soffit panels or metal strips. So unremarkable that I bet most people (not counting architectural snobs like me) take no notice. Look at a historic home and you’ll see boards—often with a interesting pattern or molding added.

Code requires roof venting where fluffy, air-permeable insulation like fiberglass or cellulose is used. Impermeable sheet foam or spray foam doesn’t need venting. The idea is that if warm moist air from the living space penetrates the attic or roof cavity, it can escape. The slots in my soffit will supply more than enough air flow through the 3” deep vent chute we built back in April (see blog post “Vent Chute”).

I shopped around for siding. Cedar is naturally decay-resistant but pricey. Rough-sawn wood in any species looks great and holds a finish better but also costs more. I looked at locally milled wood and visited several Amish farms. I trolled Craigslist and called up area lumber yards. The best deal I found was from Cedar Direct, just a few miles down the road. They import white pine from forests in British Columbia that are certified SFI (Sustainable Forestry Initiative) or from Central Oregon forests that are “selectively harvested”—not clear-cut. The price was right and the quality was good. Delivery was DIY.

I sealed the the boards with PolyWhey, a water-based sealer derived from whey—a byproduct of cheese making—from Vermont Natural Coatings. Whey is a natural bonding agent that displaces the toxic ingredients found in more common polyurethane. The manufacturer claims their product contains up to 45% renewable ingredients and is made in a plant using 50% renewable energy. When applied, it creates a non-toxic waterproof barrier, and protects again UV degradation, mold, and mildew. I found it easy to brush on, easy to clean up, and had virtually no odor. The matte finish lets the grain and coloration of the pine show through without a plastic-y look.

PolyWhey is ultra low VOC (volatile organic compounds) and meets “CA Prop 65”—the toughest environmental standard now in force in California. The standard disallows any product that contains any of the 900 chemicals that have been linked to cancer, birth defects, or other reproductive harm. PolyWhey also complies as Red List Free—a worst-in-class list of materials found in the building industry.

I ordered the sealer in 5 gallon plastic buckets instead of 1 gallon plastic containers. It wasn’t less expensive this way but I knew I could always use another bucket. Plastic containers are, in theory, recyclable—though as many of us are learning, it’s not so easy to find a facility that takes them or may take them but landfill them.

Leftover product isn’t classified as hazardous waste, and can be dried and discarded—but it’s not clear where. Because I sealed the boards before the crew chop-sawed them to fit, I have quite a few cut-offs. I contacted the manufacturer about burning or landfill. The rep admitted there isn’t any official recommendation, but said he personally would without hesitation burn them in a camp fire. So thats what I’m going to do.

cut offs     I hope the fresh appearance of my pine lasts a long time, but of course no one is going to hand me a guarantee. The USDA publication “Build Green: Wood Can Last for Centuries” points out that when wood is installed properly, it doesn’t deteriorate. Decay can be prevented. The culprit is fungi who attack the cell walls of wood in the presence of moisture, air, and favorable temperatures. On siding, we can’t control air or temperature, but we can control moisture.

My wood siding counts as a sustainable choice if I can keep it dry and on the house for a long time. I can’t control the needs or whims of a future owner, but here’s what I can do as the original builder:

  1. Apply water-proof sealer to clean, dry, freshly milled (not exposed to UV) wood on 4 sides prior to installation and to field cuts (end grain) during or after installation. This repels rain and limits wood movement like cupping, splitting and popped nails.
  2. Install siding with tight joints and caulk or flash all penetrations. Use bevel cuts at splices and cut any horizontal trim at a slope to shed water.
  3. Eliminate trees or large shrubs next to the house that cast shade and block air
    movement (both slow drying and encourage mold, mildew, and pests).
  4. Provide generous roof overhangs, kick-out flashings, and hold siding away from grade to prevent splash-back (my pine siding starts 32” from grade, above impervious cement board lap siding).
  5. Hold siding off roof surface to prevent wicking from snow melt.
  6. Shut down bulk vapor drive by air-sealing each and every penetration through the wall at each layer of material and use vapor-permeable materials to slow or store but not stop vapor transmission where appropriate.
  7. Install a Heat Recovery Ventilator to maintain optimal indoor humidity

But why go through all the work and worry when I could chose vinyl, steel, aluminum, wood composites, stucco, or brick? All have positive attributes, and promise low-maintenance. Vinyl is the least expensive and most common siding here in the Midwest, and many in the green building community argue its environmental impact isn’t so bad, even though it depletes fossil fuel reserves and uses a slew of chemical additives. It sheds water well, is inherently “back-vented” to allow the wall behind to drain and dry, can last 40 years, can contain some recycled content, and can be recycled (though most tear-offs still land in a dumpster). Here’s a good article: Pro/Con: Vinyl is Green.   And here’s another take on it: The Seven Deadly Sins of Vinyl.

Wood is abundant, renewable, low-tech, and requires far less energy to make than metal or cement-based siding products. It can be a source of local jobs and spur on a more regionally-based economy (more on this in a future blog post). Its disposal doesn’t place a burden on future generations. What will our post-post-post industrial society look like in 2060 when today’s vinyl siding or steel is slated for recycling?

Each homeowner has their own preferences, place value on certain architectural features but not others, and bet on different products. Each building material we use has environmental costs associated with their material extraction, manufacture, transport, and disposal—but there is no difinitive source that tells us its durability or carbon footprint “score”. There are just too many variables.

20190913_124324Green building usually means reducing operating costs by adding layers of insulation and products like high-performance windows. But today, more attention is being paid to the carbon footprint of the products themselves—especially as climate scientists warn of an ever narrowing window of opportunity to reduce our carbon emissions. Does it still make sense to build an uber energy-efficient home if the materials used cause more climate disruption today than the cost to heat and cool the home over these next, crucial years?

Alas, the best choice is to not build at all. Refuse, Reduce, Reuse, Recycle. More on this in a future blog post.

Cement Board Siding

June 26-July 12: My crew was impressed with how sturdy and how easy it was to work with the cement board siding I ordered through my local lumber yard. My design called for lap siding on the garage and as a “skirt” to wrap the base of the house. I chose James Hardie’s extra-thick “Artisan” series in a 7 inch reveal with smooth texture for its strong character and robust shadow lines.

20190710_142406The crew did a great job planning the joints to reduce visual distraction and material waste. Installer-friendly features include an integral tongue & groove for a tight butt joint and excellent rain-shedding ability. The boards are nailed “blind” and “off stud” to avoid tear-out at vulnerable edges. Alignment is a sure thing with a galvanized steel “joiner” from Simplicity Tools placed under each joint. Corners are finished with another steel accessory, for a look reminiscent of a mid-century rancher. However, the installation left a worrisome gap at the bottom, a place bees might like to nest. I made the hole inhospitable by packing it with inexpensive stainless steel “scrubbies”.  A rough-sawn cedar sill caps off the skirt.

Fiber cement sidings “green” credentials are debatable. It’s mostly cement, with cellulose fiber added as a binder. Mixed in, but not disclosed on the packaging or the Safety Data Sheet, are James Hardie’s proprietary ingredients. Cement is simply crushed rock—abundant and benign. But processing it and forming it into something you can nail onto your house burns up a lot of fossil fuels. It’s estimated that cement plants account for 5% of the global emissions of carbon dioxide, the main cause of global warming.

To their credit, James Hardie claims that 75% of the products raw materials are locally sourced, including the portland cement, cellulose pulp, sand, and water. These raw materials are low in toxicity, and the siding poses no health concerns in ordinary handling. However when cut, drilled, or crushed the dust is an inhalation hazard. My crew used a proprietary James Hardie saw blade designed to minimize dust and set up outside, away from people and buildings.

Like most manufacturers, James Hardie is cagey about disposal. Their Saftey Data Sheet says to dispose of in a “secure landfill, or in a way that won’t expose others to dust”. I talked with a representative, and in the end decided to toss my cut-offs on site. They’ll be fill for the driveway, displacing the amount of gravel to be hauled in.cement board wasteUsing a high embodied-energy material can be justified if you don’t use much of it and you design for a long service life. I can’t predict what a future owner might do, but here’s what I can do:

  1. Build a small house with deep overhangs.
  2. Provide gutters to keep rain away and/or prevent splash-back at grade (more on this in a future blog post).
  3. Install with care and maintain caulk joints and paint finish.
  4. Eliminate trees or large shrubs next to the house that cast shade and block air movement (both slow drying and encourage mold, mildew, and pests).
  5. Minimize waste by ordering accurately and plan the layout for minimal cut-offs.

I love to paint. Sure it can be messy and a pain, but in the category of work I find it enjoyable. Most James Hardie products come with a factory finish, but in the thickness and width I chose it only came primed. That gave me the chance to pick my own hue and to try out a best-in-class eco-friendly paint.

I chose ECOS Paints in a matte gray, and it went on smoothly. Coverage was good, though there was some objectionable odor. Clean up was a breeze. Life expectancy is 15-20 years.

The paint can be purchased directly from the manufacturer, or through a distributor like Green Building Supply. The reviews at GBS were compelling. The paint is non-toxic and has zero VOC’s (volatile organic compounds). ECOS was the first and remains the only paint manufacturer to meet the strict labeling of both “DECLARE” and “Red List Free”.

DECLARE is a disclosure statement with more transparency than the more common Material Safety Data Sheet (MSDS)—it requires listing ALL ingredients, right on the label. Red List Free means the product doesn’t contain ANY of the thousands of known hazardous chemicals. Leftover paint and the empty containers aren’t classified as hazardous waste, so can be left to dry then tossed in an approved landfill.

The house is taking on a handsome look, and I hope you’ll stop by and see for yourself.  You’re welcome anytime!

%d bloggers like this: